JEODEZİK GPS AĞLARININ ÖLÇÜT MATRİSLERİ İLE ÖLÇÜ PLANI OPTİMİZASYONU

K. Teke¹, M. Yalçınkaya¹

¹Karadeniz Teknik Üniversitesi, Jeodezi ve Fotogrametri Mühendisliği Bölümü, Trabzon, mualla@ktu.edu.tr

ÖZET

Günümüzde teknolojinin gelişimi ile birlikte jeodezide yersel ağların yerini GPS (Global Positioning System) ağları almıştır. Bu bağlamda, GPS ağlarının optimizasyonu konusu da önem kazanmıştır. GPS ağlarında datum ve geometrik yapı bilindiği durumlarda, seçilen amaç fonksiyonuna göre bazların konfigürasyonunun ve ölçü ağırlıklarının en uygun biçimde belirlenmesi işlemi, ağın ölçü planı optimizasyonunun yapılması ile gerçekleştirilebilir. Geleneksel yersel ağlardan farklı olarak GPS ağlarında noktaların birbirlerini görme gereksinimi olmadığından ölçü planı optimizasyonunun uygulanabilirliği büyük oranda artmıştır. GPS ağlarının optimizasyonunda, duyarlık ölçütlerinden seçilen amaç fonksiyonu değerlerinin minimum yapılması, büyük oranda ağ noktalarının konumlarına ve bazların konfigürasyonuna bağlıdır. Duyarlık ölçütlerinden türetilen skaler amaç fonksiyonları ancak sınırlı istekleri karşılayabilmektedir. Bir anda çok daha ayrıntılı beklentileri karşılayan ve ağda istenen konum duyarlığını tam olarak gösteren, önceden hesaplanan ideal bir yapay varyans-kovaryans matrisi biçiminde tanımlanan ölçüt matrisi, optimizasyonda en çok kullanılan amaç fonksiyonudur. Bu çalışmada, GPS ağlarının ölçü planı optimizasyonunun ölçüt matrisleri ile yapılması amaçlanmıştır.

Çalışmada, Karadeniz Teknik Üniversitesi Kampus alanı ve Trabzon Hava Alanının bir kısmını kapsayacak biçimde tasarlanan bir GPS ağının ölçü planı optimizasyonu yapılmıştır. Ağın duyarlık yönünden homojen ve izotrop yapıda olması öngörülmüştür. Bu nedenle ölçüt matrisi, nokta hata elipsoidleri küre görünümünde (izotropluk), tüm hata elipsoidleri eşit büyüklükte (homojenlik), bağıl hata elipsoidlerinin yarıçapları noktalar arasındaki uzunluğun bir fonksiyonu olan tam izotrop yapıda Taylar-Karman matrisi olarak seçilmiştir. Oluşturulan ölçüt matrisine S-dönüşümü ile datum uyumu sağlanmıştır. Ölçü ağırlıklarının hesabında, ölçüt matrisine çözüm algoritması olarak en küçük kareler çözümlerinden ölçüt matrisinin inversine direkt yaklaşım (U,m çözümü) uygulanmıştır. Çözümün ilk adımında, olası tüm bazlarla oluşturulan ölçü planından, ağırlıkları negatif ve sıfıra yakın olan (amaç fonksiyonuna katkısı olmayan) bazlar çıkarılarak ağın en uygun baz konfigürasyonu belirlenmiştir. Bu çözümün ikinci adımında ise ölçü planında kalan bazların optimal ağırlıkları hesaplanmıştır. Çalışma sonucunda, GPS ağlarının ölçüt matrisiyle ölçü planı optimizasyonuna ilişkin uygulanabilir çözüm önerileri sunulmuştur.

Anahtar Sözcükler: Duyarlık, Taylor-Karman ölçüt matrisi, U,m çözümü, Optimizasyon, Ölçü planı.

ABSTRACT

SURVEY SCHEDULE OPTIMIZATION OF GPS NETWORKS WITH CRITERION MATRICES

Nowadays, with the developments in technology, GPS (Global Positioning System) networks have taken the place of terrestrial networks in geodesy. In this context, the aim of GPS network optimization has gained importance. Whether the datum and point locations of a network was known, the process of determining the optimal baseline configuration and their optimal weights in respect of the selected design criterion can be achieved by optimizing survey schedule. Different from terrestrial networks, GPS networks need not to ensure the visibility conditions. Therefore the applicability of survey schedule optimization for GPS networks has been improved. When optimizing GPS networks, minimizing the value of design criterion which is chosen from accuracy criteria, mostly depends on the locations of the network's points and the baseline configuration. The scalar design criteria which are derived from accuracy criteria, can only answer to the limited demands for a network. The criterion matrix, which can be defined as the computed variance-covariance matrix in designing stage that meet many of the accuracy demands and illustrate all the points' position accuracies of the network, is mostly used when optimizing geodetic networks. Survey schedule optimization of GPS networks with criterion matrices was aimed to carry out with in this study.

In the study, it was aimed to carry out survey schedule optimization of a GPS network which is planning to establish in Karadeniz Technical University campus and a part of Trabzon airport area. It was envisaged for the network to ensure the isotropy and homogeneity conditions in respect of accuracy. For that reason a criterion matrix was constituted which provides equal sized (homogeneity) and sphere viewed (isotropy) error ellipsoids of points and the radius of the relative error ellipsoids are computed from a function of the distances between points, named chaotic (complete isotropy) Taylor-Karman structured criterion matrix. By an S transformation, criterion matrix's datum adaptation to the network was provided. In order to compute the optimal weights of observations, direct approximation of the inverse criterion matrix (U, m solution) approach was applied. In the first step of the solution, optimal baseline configuration was found out by removing the baselines of which weights are negative or near zero (the baselines that have not any contribution to the design criteria) from the survey schedule. In the second step of this solution, optimal weights of the remaining baselines in the survey schedule were computed. As the result of the study, applicable solutions were suggested as to optimize GPS network survey schedule with criterion matrices.

Keywords: Accuracy, Taylor-Karman structured criterion matrix, U,m solution, Optimization, Survey Schedule.

1. GİRİŞ

Jeodezik ağların tasarımı, geliştirilmesi ve iyileştirilmesi aşamalarında kendilerinden beklenen işlevleri yerine getirebilmeleri için belirli duyarlık ve güven isteklerini sağlamaları gerekir. Bu nedenle tasarımı aşamasında jeodezik ağların optimizasyonları yapılmalıdır. Günümüzde teknolojinin gelişimiyle birlikte jeodezide yersel ağların yerini GPS ağları almıştır. GPS ağı ölçüsünün optimum planlanması, ağ noktalarının ve uyduların konfigürasyonuna, ölçülecek bazların seçimine, kullanılacak alıcıların tipine, çevresel hata kaynaklarına ve ekonomik koşullara bağlıdır. GPS ağlarının duyarlık yönünden optimizasyonu, ölçülecek bazların muhtemel tüm bazlar arasından seçimi şeklinde gerçekleştirilebilir. Amaç fonksiyonuna en fazla hizmet eden bazlar ve bunların optimal ağırlıklarının belirlenmesi ikinci derece optimizasyon işlemi ile gerçekleştirilir. Optimizasyonda çözüm algoritmaları, simülasyon yöntemleri (Tekrarlı En Küçük Kareler, Monte-Carlo) ve analitik yöntemler (En Küçük Kareler Çözümleri (Direkt HR Çözümü, Yinemeli HR çözümü ve U,m Çözümü), Doğrusal programlama ve Doğrusal Olmayan Programlama) olmak üzere sınıflandırılır. Ağırlıklar, çözüm algoritmalarından ölçüt matrisine uygulanan analitik yöntemlerle hesaplanır (Grafarend ve Sanso, 1985; Kuang, 1996; Schaffrin, 1985; Konak, 1994; Even-Tzur, 2001).

Uygulamada tasarlanan GPS ağına ilişkin ölçüt matrisine, analitik bir yöntem olan en küçük kareler çözümlerinden U,m çözümü uygulanmıştır. Amaç fonksiyonu olarak, nokta hata elipsoidlerinin küre görünümünde (izotropluk), tüm hata elipsoidlerinin eşit büyüklükte (homojenlik), bağıl hata elipsoidlerinin yarıçaplarının noktalar arasındaki uzunluğun bir fonksiyonu olduğu tam izotrop yapıda Taylar-Karman ölçüt matrisi seçilmiştir. Oluşturulan ölçüt matrisine S dönüşümü uygulanarak ağ ile datum uyumu sağlanmıştır. Ölçüt matrisinin inversine direkt yaklaşım olarak da bilinen U,m çözümünün ilk adımında, olası tüm bazlarla oluşturulan ölçü planından (maksimum ölçü planı), ağırlıkları negatif ve sıfıra yakın olan (amaç fonksiyonuna katkısı olmayan) bazlar çıkarılarak ağın en uygun baz konfigürasyonu belirlenmiştir. Bu çözümün ikinci adımında ise ölçü planında kalan bazların optimal ağırlıkları hesaplanmıştır (Grafarend ve Sanso, 1985; Dare, 1995; Even-Tzur ve Papo, 1996).

2. ÖLÇÜT MATRİSLERİ İLE ÖLÇÜ PLANI OPTİMİZASYONU

Duyarlık ölçütlerinden türetilen skaler amaç fonksiyonları ancak sınırlı istekleri karşılayabilmektedir. Bir anda çok daha ayrıntılı beklentileri karşılayan ve ağda istenen konum duyarlığını tam olarak gösteren, önceden hesaplanan ideal bir yapay varyans-kovaryans matrisi biçiminde tanımlanan ölçüt matrisi, optimizasyonda en çok kullanılan amaç fonksiyonudur. Bir ağırlık optimizasyonu işleminde, ulaşılması istenen duyarlık isteklerini karşılamak amacıyla oluşturulan ölçüt matrislerinin ağın geometrik yapısına uygun olarak seçilmesi gerekir (Öztürk ve Şerbetçi, 1992).

Jeodezik ağların optimizasyonun da temel esas ölçülerin arazide herhangi bir ölçü yapılmaksızın elde edilmesidir. GPS ağlarının optimizasyonun da dizayn matrisi (A) ölçülerden bağımsız bir şekilde oluşturulan kararlı yapıda bir matristir. Dizayn matrisinin oluşturulmasında baz vektörlerinin büyüklüklerini hesaplamaya gerek yoktur. Ancak ölçüt matrisi elemanları noktalar arasındaki uzunluklara bağlı olarak yazılan korelasyon fonksiyonlarından elde edilir. Bu nedenle arazide herhangi bir ölçü yapmaksızın bu uzunluk değerlerini elde etmek için noktaların WGS-84 datumunda hesaplanacak kartezyen koordinatlarına gereksinim vardır.

2.1 Baz Vektörlerinin Hesabı

GPS ağının nokta konumları tasarlandıktan sonra olası tüm bazların büyüklüklerinin hesabı için ağ noktalarının WGS-84 datumunda kartezyen koordinatlarına gereksinim vardır. Ağ noktalarının WGS-84 kartezyen koordinatlarını hesaplamak için harita üzerine işaretlenen noktaların projeksiyon koordinatları (UTM veya DUTM) okunur ve okunan sağa ve yukarı değerleri, Gauss-Krüger (x, y) koordinatlarına dönüştürülür. Noktaların Gauss-Krüger koordinatları (x, y) Hayford elipsoidi coğrafi koordinatlarına (B, L),

$$B = B_{f} + B_{2}y^{2} + B_{4}y^{4}$$

$$L = L_{0} + B_{1}y + B_{3}y^{3} + B_{5}y^{5}$$
(1)

tek değişkenli kuvvet serileri ile dönüştürülür. Burada, B_f ayak noktası enlemini; (B_1 , B_2 , B_3 , B_4 ve B_5), tek değişkenli kuvvet serileri katsayılarını ve L_0 , dilim orta meridyeni boylamını göstermektedir. Noktaların haritadan elde edilen ortometrik yüksekliklerine (H) jeoid ondülasyonları (N) eklenerek elipsoid yükseklikleri (h),

$$\mathbf{h} = \mathbf{H} + \mathbf{N} \tag{2}$$

eşitliği ile hesaplanır. Noktaların Avrupa datumu (ED-50)'deki coğrafi koordinatları (B, L, h)_{ED50}, kartezyen koordinatlara $(X, Y, Z)_{ED50}$

$$z^{2} = \frac{a^{2} - b^{2}}{a^{2}}, \ \rho = \frac{a}{\sqrt{1 - e^{2} \sin^{2} B}}$$

$$X_{ED50} = (\rho + h) \cos B \cos L$$

$$Y_{ED50} = (\rho + h) \cos B \cos L$$

$$Z_{ED50} = (\frac{b^{2}}{a^{2}}\rho + h) \sin B$$
(3)

eşitlikleri ile dönüştürülür. Burada, e, elipsoidin birinci eksentrisitesi ve ρ , elipsoidin enine eğrilik yarıçapını göstermektedir. ED-50 datumundan WGS-84 datumuna dönüşüm için kartezyen koordinat sistemleri arasındaki 7 dönüşüm parametresi, 3 ortak noktanın koordinatları kullanılarak dengelemeli benzerlik dönüşümü ile hesaplanır. Böylece ED-50 datumundan WGS-84 datumuna, t_x , t_y , t_z , iki sistem orijinleri arasındaki ötelemeler; ε_x , ε_y , ε_z , iki sistemin koordinat eksenleri arasındaki dönüklükler ve k, ölçek faktörü olmak üzere dönüşüm

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{WGS84} = \begin{bmatrix} t_{X} \\ t_{Y} \\ t_{Z} \end{bmatrix} + k \begin{bmatrix} 1 & \varepsilon_{Z} & -\varepsilon_{Y} \\ -\varepsilon_{Z} & 1 & \varepsilon_{X} \\ \varepsilon_{Y} & -\varepsilon_{X} & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{ED50}$$
(4)

eşitliğiyle yapılır. Noktaların WGS84 datumundaki koordinatlarının farkları alınarak tasarlanan bazlar (ΔX , ΔY , ΔZ)_{WGS84} elde edilir (Wolf ve Ghilani, 1997).

2.2. Ölçüt Matrisinin Oluşturulması

Ölçüt matrisi, elemanları ağ noktaları arasındaki uzunluklara bağlı olarak yazılan korelasyon fonksiyonlarından oluşan bir matristir. Datumdan bağımsız ölçüt matrisi, $\Delta X = X_i - X_j$, $\Delta Y = Y_i - Y_j$, $\Delta Z = Z_i - Z_j$, i ve j noktaları için baz vektörleri büyüklükleri; $\phi_m(S)$ enine korelasyon fonksiyonu; $\phi_1(S)$ boyuna korelasyon fonksiyonu ve S iki noktayı birleştiren vektörün uzunluğu olmak üzere

$$C_{xx} = \begin{bmatrix} \phi_{m}(S) & 0 & 0\\ 0 & \phi_{m}(S) & 0\\ 0 & 0 & \phi_{m}(S) \end{bmatrix} + \begin{bmatrix} \phi_{l}(s) - \phi_{m}(s) \end{bmatrix} \begin{bmatrix} \frac{\Delta X^{2}}{S^{2}} & \frac{\Delta X \Delta Y}{S^{2}} & \frac{\Delta X \Delta Z}{S^{2}} \\ \frac{\Delta X \Delta Y}{S^{2}} & \frac{\Delta Y^{2}}{S^{2}} & \frac{\Delta Y \Delta Z}{S^{2}} \\ \frac{\Delta X \Delta Z}{S^{2}} & \frac{\Delta Y \Delta Z}{S^{2}} \end{bmatrix}$$
(5)

eşitliğinden hesaplanır (Grafarend ve Sanso, 1985). Ağın homojen ve izotrop yapıda olması öngörüldüğünde, ölçüt matrisi olarak nokta hata elipsoidleri küre görünümünde (izotropluk), tüm hata elipsoidleri eşit büyüklükte (homojenlik) ve bağıl hata elipsoidlerinin yarıçapları noktalar arasındaki uzunluğun bir fonksiyonu olan tam izotrop yapıda Taylar-Karman matrisi seçilebilir. Bu durumda tek bir korelasyon fonksiyonu,

$$\varphi_{m}(S) = \varphi_{1}(S) = \varphi(S) \tag{6}$$

şeklinde tanımlanır. d, izotrop (küre) görünümdeki nokta hata elipsoidlerinin yarıçapları; c, tüm $\varphi(S)$ değerlerinin pozitif olmasını sağlayacak şekilde seçilen keyfi bir katsayı olmak üzere korelasyon fonksiyonu,

$$\varphi(S) = d^2 - 2c^2 S_{ij(km)}$$
(7)

şeklinde ağ noktaları arası uzunlukların bir doğrusal fonksiyonu şeklinde ifade edilebilir. Bu durumda tam izotrop yapıda Taylor-Karman ölçüt matrisi, i ve j noktaları için

	$\phi(S)$	0	0	$\phi(S)$	0	0]		d ²	0	0	$d^{2} - 2c^{2}S_{ij}$	0	0	
	0	φ(S)	0	0	$\phi(S)$	0		0	d ²	0	0	$d^{2} - 2c^{2}S_{ij}$	0	
с –	0	0	φ(S)	0	0	φ(S)		0	0	d ²	0	0	$d^{2} - 2c^{2}S_{ij}$	(0)
$C_{xx} =$	φ(S)	0	0	φ(S)	0	0	= c	$d^2 - 2c^2 S_{ij}$	0	0	d ²	0	0	(8)
	0	φ(S)	0	0	φ(S)	0		0	$d^{2} - 2c^{2}S_{ij}$	0	0	d ²	0	
	0	0	φ(S)	0	0	φ(S)		0	0	$d^{2} - 2c^{2}S_{ij}$	0	0	d ²	

şeklinde elde edilir. Datumdan bağımsız olarak oluşturulan ölçüt matrisinin, ölçü planından oluşturulan yapay varyanskovaryans matrisi ile karşılaştırılabilmesi için I, birim matris; G, dönüşümün ortagonal özellikli katsayılar matrisi olmak üzere, S dönüşüm matrisi, Jeodezik GPS Ağlarının Ölçüt Matrisleri İle Ölçü Planı Optimizasyonu

$$\mathbf{S} = \mathbf{I} - \mathbf{G} (\mathbf{G}^{\mathrm{T}} \mathbf{G})^{-1} \mathbf{G}^{\mathrm{T}}$$
(9)

şeklinde hesaplanır ve ölçüt matrisinin ağ ile datum uyumu,

$$\overline{\mathbf{Q}}_{\mathbf{x}\mathbf{x}} = \mathbf{S}\mathbf{C}_{\mathbf{x}\mathbf{x}}\mathbf{S}^{\mathrm{T}} \tag{10}$$

biçiminde S dönüşümü ile sağlanır (Grafarend ve Sanso, 1985; Öztürk ve Şerbetçi, 1992; Gerasimaenko, 1997).

2.3. Ölçüt Matrisi İle En Uygun Vektör Konfigürasyonu ve Ölçü Ağırlıklarının Belirlenmesi

Ölçüt matrisi ve ağın maksimum ölçü planı esas alınarak düzeltme denklemlerinin katsayıları matrisi (A) oluşturulur. İkinci derece optimizasyonun temel eşitliğinden

$$A^{T}PA \doteq \overline{Q}_{xx}^{+} \tag{11}$$

en küçük kareler çözümleri olan Direkt HR, Dolaylı HR veya U,m çözüm algoritmaları ile optimal ağırlıklar (P) hesaplanır. Bu eşitlikte P, ölçülerin bilinmeyen ağırlıklar matrisini; \overline{Q}_{xx} ölçüt matrisini göstermektedir.

Ölçüt matrisinin inversine direkt yaklaşım olan U,m çözümünde (11) eşitliği, \doteq , tutarsız eşitlik işaretini; Θ , Khatri-Rao çarpım işaretini; p, ölçülere ilişkin bilinmeyen ağırlık matrisinin (P) köşegen elemanlarından oluşan vektörü ve q, ölçüt matrisi inversinin (\overline{Q}_{xx}^+) sütun şeklinde düzenlenmiş tüm elemanlarından oluşan vektörü göstermek üzere

$$(A^{T} \odot A^{T})p \doteq q$$

$$p = \text{vektör}(P)$$

$$q = \text{vektör}(\overline{Q}_{xx}^{+})$$

$$(12)$$

doğrusal denklem sistemine dönüştürülür (Grafarend, 1975). (12) eşitliği ile verilen tutarsız doğrusal denklem sistemi, tutatarsızlık parametrelerinin (d) ilavesi ile,

$$(\mathbf{A}^{\mathrm{T}} \odot \mathbf{A}^{\mathrm{T}})\mathbf{p} = \mathbf{q} + \mathbf{d}$$
(13)

....

şeklinde tutarlı hale getirilir. e, bir vektörünü göstermek üzere, ölçü ağırlıkları (p),

$$d^{T}d = e^{T} \{ [(A^{T}PA) - \overline{Q}_{xx}^{+}]^{*} [(A^{T}PA) - \overline{Q}_{xx}^{+}] \} e \Rightarrow \min$$
(14)

koşulunun sağlandığı en küçük kareler çözümü ile

$$\mathbf{p} = [(\mathbf{A}^{\mathrm{T}} \odot \mathbf{A}^{\mathrm{T}})^{\mathrm{T}} (\mathbf{A}^{\mathrm{T}} \odot \mathbf{A}^{\mathrm{T}})]^{+} (\mathbf{A}^{\mathrm{T}} \odot \mathbf{A}^{\mathrm{T}})^{\mathrm{T}} \mathbf{q}$$
(15)

eşitliğinden hesaplanır (Ayan, 1981; Illner, 1986; Kınık, 1987). Burada *, Hadamart çarpım işaretini göstermek üzere Khatri-Rao çarpımları, Hadamard çarpımları ile

$$(\mathbf{A}^{\mathrm{T}} \odot \mathbf{A}^{\mathrm{T}})^{\mathrm{T}} (\mathbf{A}^{\mathrm{T}} \odot \mathbf{A}^{\mathrm{T}}) = (\mathbf{A}\mathbf{A}^{\mathrm{T}} \ast \mathbf{A}\mathbf{A}^{\mathrm{T}}) \tag{16}$$

gösterilerek ölçü ağırlıkları,

$$\mathbf{p} = (\mathbf{A}\mathbf{A}^{\mathrm{T}} * \mathbf{A}\mathbf{A}^{\mathrm{T}})^{+} (\mathbf{A}^{\mathrm{T}} \odot \mathbf{A}^{\mathrm{T}})^{\mathrm{T}} \mathbf{q}$$
(17)

eşitliğinden elde edilir. p vektöründeki negatif ağırlıklı elemanlara karşılık gelen bazlar ölçüt matrisi ile formüle edilmiş istekleri karşılamayan diğer bir ifade ile amaç fonksiyonuna katkısı olmayan bazlardır. Negatif ağırlıklı bazlar ölçü planından çıkarılarak ağın en uygun baz konfigürasyonu belirlendikten sonra (17) eşitliğinden kalan bazların optimal ağırlıkları hesaplanır. Normal denklemlerin tersi ile ölçüt matrisi arasındaki sapmaların kareleri toplamı minimum olması koşulu ile λ çarpanı ve optimal ölçü ağırlıkları

$$\lambda = iz[(A^{T}PA)^{+}(A^{T}PA)^{+}]$$
(18)

$$iz[(A^{T}PA)^{+}Q_{xx}]$$

$$p_d = \lambda p \tag{19}$$

eşitliklerinden hesaplanır. λ çarpanı, elde edilen ve öngörülen nokta duyarlıklarının olabildiğince birbirine yaklaşmasını sağlar. Diğer bir ifade ile λ çarpanı ile ağırlıklar ölçeklendirilerek, normal denklemlerin tersinin ana köşegen elemanları, ölçüt matrisinin ana köşegen elemanlarına en uygun biçimde yaklaştırılır. $p_d = köşegen(P_d)$ olmak üzere global ölçüt değeri,

$$d^{T}d = e^{T} \{ [(A^{T}P_{d}A) - \overline{Q}_{xx}^{+}] * [(A^{T}P_{d}A) - \overline{Q}_{xx}^{+}] \} e$$
(20)

eşitliğinden hesaplanır. Bu değer, optimizasyon sonuçlarının denetlenmesi açısından önemli bir büyüklüktür ve ölçüt matrisinin uygunluğunun etkili bir biçimde denetlenmesine olanak sağlar. Eşdeğerlik testi değeri ise

$$\mathbf{B} = (\mathbf{A}^{\mathrm{T}} \mathbf{P}_{\mathbf{d}} \mathbf{A})^{+} \overline{\mathbf{Q}}_{\mathbf{xx}}^{+}$$
(21)

eşitliğinden hesaplanan B matrisinin en büyük özdeğeridir. Bu değer olabildiğince 1'e yaklaşmalıdır. Eğer ağırlığı negatif olan çok sayıda ölçü var ise ölçüt matrisinin uygun seçilmediği sonucuna varılır. B matrisinin en büyük özdeğerinin minimum olduğu durumda ise gerçekleştirilen ters ağırlık matrisinin ölçüt matrisine en çok yaklaştığı yorumu yapılır. Böyle bir yorumun gerçekçi olabilmesi için global ölçüt değerinin de küçük olmasını sağlayan bir ölçüt matrisi seçilmelidir (Ayan, 1981; Konak, 1994; Özşamlı, 1994).

3. TEST AĞI ÜZERİNDE UYGULAMA

Çalışmada, Karadeniz Teknik Üniversitesi kampus alanı ve Trabzon hava alanının bir kısmını kapsayacak biçimde yaklaşık 1x1.5 km boyutlarında oluşturulan bir GPS ağının ölçü planı optimizasyonunun ölçüt matrisinin inversine direkt yaklaşım (U,m) çözümü ile yapılması amaçlanmıştır. İlk olarak çalışmanın gerçekleştirileceği bölgenin haritası üzerinde ağ noktaları, karelaj ağ geometrisini yansıtacak biçimde, ulaşılabilirlik dikkate alınarak, gökyüzü görüşünün açık olduğu bölgelerde işaretlenmiştir (Şekil 1).

Şekil 1: Uygulama ağı

İşaretlenen noktaların DUTM (Değiştirilmiş Universal Transverse Mercator) projeksiyon koordinatları okunmuştur. Projeksiyon koordinatları (1, 2, 3 ve 4) eşitlikleri ile WGS-84 datumu kartezyen koordinatlarına dönüştürülmüştür (Tablo 1). Ağ noktalarının WGS-84 datumundaki koordinatlarının farkları alınarak tasarlanan bazlar $(\Delta X, \Delta Y, \Delta Z)_{WGS-84}$ ve ölçüt matrisinin elemanlarından korelasyon fonksiyonlarının oluşturulmasında kullanılacak ağ noktalarını birleştiren vektör uzunlukları elde edilmiştir. Jeodezik GPS Ağlarının Ölçüt Matrisleri İle Ölçü Planı Optimizasyonu

WGS-84 KARTEZYEN KOORDİNATLARI												
NN.	NN. X (m) Y (m) Z (m)											
N1	3705593.062	3084206.610	4162021.731									
N2	3705757.467	3084431.882	4161750.996									
N3	3705901.177	3083829.246	4161989.550									
N4	3706087.160	3084044.936	4161755.424									
N5	3704673.922	3084249.292	4162621.029									
N6	3705140.056	3084601.929	4162012.596									
N7	3705176.047	3083672.348	4162595.620									
N8	3704898.518	3083949.677	4162642.313									
N9	3705340.249	3084010.947	4162296.859									
N10	3705485.632	3084578.116	4161781.804									
N11	3705644.661	3083604.438	4162303.652									

Tablo 1: Tasarı ağ noktalarının WGS-84 kartezyen koordinatları

Ölçüt matrisi, nokta hata elipsoidi yarıçapları (d) 1 cm olan küre görünümünde, tüm hata elipsoidleri eşit büyüklükte, bağıl hata elipsoidlerinin yarıçapları noktalar arasındaki uzunluğun bir fonksiyonu olan tam izotrop yapıda Taylar-Karman matrisi olarak seçilmiştir. Ölçüt matrisine S dönüşümü yapılarak ağ ile datum uyumu sağlanıp, ağdaki noktalara ilişkin özdeğerler ve hata elipsoidi yarı eksenleri hesaplanmıştır (Tablo 2).

NINI	Q _{xx}	Matrisinin Özdeğ	erleri	$\mathbf{Q}_{\mathbf{x}\mathbf{x}}$ Matrisi Hata Elipsoidi Yarı Eksenleri (cm)				
1111	$\lambda_{\mathbf{X}}$	λ_{Y}	λ_z	A _H (cm)	B _H (cm)	С _н (ст)		
N1	0.728	0.728	0.728	0.85	0.85	0.85		
N2	0.968	0.968	0.968	0.98	0.98	0.98		
N3	0.985	0.985	0.985	0.99	0.99	0.99		
N4	1.310	1.310	1.310	1.14	1.14	1.14		
N5	1.645	1.645	1.645	1.28	1.28	1.28		
N6	1.140	1.140	1.140	1.07	1.07	1.07		
N7	1.131	1.131	1.131	1.06	1.06	1.06		
N8	1.226	1.226	1.226	1.11	1.11	1.11		
N9	0.755	0.755	0.755	0.87	0.87	0.87		
N10	1.035	1.035	1.035	1.02	1.02	1.02		
N11	1.069	1.069	1.069	1.03	1.03	1.03		

Tablo 2: Ölçüt matrisinden hesaplanan özdeğerler ve hata elipsoidi elemanları yarı eksenleri

Oluşturulan ölçüt matrisine, tasarlanan maksimum ölçü planından (Şekil 2) ölçü ağırlık dağılımı belirlenerek yaklaşılmaya çalışılmıştır.

Şekil 2: Tüm ölçü olanaklarını kapsayan ağ

Şekil 2'deki ölçü planından oluşturulan A matrisi kullanılarak (17) eşitliğinden bazların ağırlıkları hesaplanmıştır. Ağırlıklardan negatif olanlarına karşılık gelen bazlar ölçüt matrisi ile belirlenen amaç fonksiyonuna hizmet etmediğinden ölçü planından çıkarılmıştır ve 3 yinelemede optimum ağa ulaşılmıştır. Her adımda ölçüt matrisine ne derecede yaklaşılabildiğine (20) eşitliğinde verilen global ölçüt değeri ve (21) eşitliği ile elde edilen B matrisinin en büyük özdeğerine bakılarak karar verilmiştir. İlk adım sonucu 55 bazdan 31'i, ikinci adımda 24 bazdan 2'si negatif ağırlıklı bulunmuş ve ilgili bazlar ölçü planından çıkarılmıştır. Üçüncü adımda kalan 22 bazdan 4 bazın ağırlığı sıfıra çok yakın olduğu için bu bazlar da ölçü planından çıkarılarak optimal ağırlıklar elde edilmiştir. Bu adımda

(0.005<pi<0.01) olan ağırlıklar sıfıra çok yakın olarak kabul edilmiştir. Bu değerlerden sonra gelen en küçük ağırlıklı baz (N1-N6) ölçü planından çıkarılarak ölçüt matrisine ne ölçüde yaklaşıldığı dördüncü adımda irdelenmiştir (Tablo 3).

	Birinci Adım	İkinci Adım	Üçüncü Adım	Dördüncü Adım
Optimizasyona Giren Ölçü Sayısı	55*3 = 165	24*3=72	22*3=66	18*3=54
Ölçü Planından Çıkarılan Ölçü Sayısı	31*3 = 93	2*3=6	4*3=12	1*3=3
Kalan Ölçü Sayısı	24*3 = 72	22*3=66	18*3=54	17*3=51
Global Ölçüt Değeri (d ^T d)	1.11	1.14	1.19	6.74
Eş Değerlik Testi Değeri	$\lambda_{\rm max} = 1.05$	$\lambda_{\rm max} = 1.05$	$\lambda_{\rm max} = 1.07$	$\lambda_{\rm max} = 1.75$

Tablo 3: Optimizasyon sonuçları

Tablo 3'de görüldüğü gibi dördüncü adımda global ölçüt değeri yaklaşık 6 kat ve eş değerlik testi değeri 1.5 kat artmıştır. Bu durum, üçüncü ölçü planından herhangi bir bazın çıkarılmasının, gerçekleştirilen ters ağırlık matrisinin ölçüt matrisinden büyük oranda sapmasına neden olduğunu göstermektedir. Bu bağlamda, üçüncü adımda optimal ağırlık dağılımına ulaşıldığına karar verilmiştir.

Optimizasyon işlemindeki duyarlık irdelemesi, ölçüt matrisi ve gerçekleştirilen ters ağırlık matrislerinden hesaplanan özdeğerler ve hata elipsoidlerinin yarı eksen uzunlukları incelenerek yapılmıştır (Tablo 4).

	Birinci Adım							İkinci Adım					
NN	(A ^T P Č	A) ⁺ Matr Dzdeğerle	isinin ri	(A ^T PA Elipsoie	A) ⁺ Matris di Yarı E (cm)	si Hata ksenleri	NN	(A ^T P	A) ⁺ Matr Dzdeğerle	isinin ri	(A ^T PA)⁺ Matrisi Hata Elipsoidi Yarı Eksenleri (cm)		
	$\lambda_{\mathbf{X}}$	$\lambda_{\mathbf{Y}}$	λ_z	A _H (cm)	B _H	C _H		$\lambda_{\mathbf{X}}$	$\lambda_{\mathbf{Y}}$	λ_z	A _H (cm)	B _H	C _H (cm)
N1	0.831	0.831	0.831	0.91	0.91	0.91	N1	0.832	0.832	0.832	0.91	0.91	0.91
N2	1 503	1 503	1 503	1 23	1 23	1 23	N2	1 493	1 493	1 493	1.22	1.22	1.22
N3	1 435	1 435	1.005	1.20	1.20	1.20	N3	1 435	1 435	1 435	1.20	1.20	1.20
N4	1.965	1.965	1.965	1.41	1.41	1.41	N4	1.937	1.937	1.937	1.39	1.39	1.39
N5	2.378	2.378	2.378	1.54	1.54	1.54	N5	2.372	2.372	2.372	1.54	1.54	1.54
N6	1.610	1.610	1.610	1.27	1.27	1.27	N6	1.590	1.590	1.590	1.26	1.26	1.26
N7	1.724	1.724	1.724	1.32	1.32	1.32	N7	1.708	1.708	1.708	1.31	1.31	1.31
N8	1.883	1.883	1.883	1.37	1.37	1.37	N8	1.851	1.851	1.851	1.36	1.36	1.36
N9	0.852	0.852	0.852	0.92	0.92	0.92	N9	0.851	0.851	0.851	0.92	0.92	0.92
N1 0	1.530	1.530	1.530	1.23	1.23	1.23	N10	1.519	1.519	1.519	1.23	1.23	1.23
N1 1	1.516	1.516	1.516	1.23	1.23	1.23	N11	1.500	1.500	1.500	1.22	1.22	1.22
	Ücüncü Adım												
		ť	J çüncü A	dım					Dö	rdüncü A	dım		
		(A) ⁺ Motr	İ <mark>çüncü A</mark> İsinin	dım (A ^T PA	.)⁺ Matris	si Hata			Dö	rdüncü A isinin	dım (A ^T PA) ⁺ Matris	si Hata
	(A ^T P	Ċ A)⁺ Matr Zdeğerle	İçüncü A isinin ri	dım (A ^T PA Elipsoi)⁺ Matris di Yarı E	si Hata ksenleri		(A ^T P	Dö A)⁺ Matr Dzdeğerle	rdüncü A isinin ri	dım (A ^T PA Elipsoid	A)⁺ Matris di Yarı E	si Hata ksenleri
NN	(A ^T P Č	Ú A)⁺ Matr)zdeğerle	^J çüncü A isinin ri	dım (A ^T PA Elipsoi	.) ⁺ Matris di Yarı E (cm)	si Hata ksenleri	NN	(A ^T P Č	Dö A)⁺ Matr Özdeğerle	rdüncü A isinin ri	dım (A ^T PA Elipsoid	A) ⁺ Matris di Yarı E (cm)	si Hata ksenleri
NN	$(\mathbf{A}^{\mathrm{T}}\mathbf{P})$	ί A)⁺ Matr Dzdeğerle λ	İçüncü A isinin ri λα	dım (A ^T PA Elipsoid A _H) ⁺ Matris di Yarı E (cm) B _H	si Hata ksenleri Сн	NN	$(\mathbf{A}^{\mathrm{T}}\mathbf{P}$ $\ddot{\mathbf{C}}$	Dö A) ⁺ Matr Dzdeğerle λ	rdüncü A isinin ri λα	dım (A ^T PA Elipsoid A _H	A) ⁺ Matris di Yarı E (cm) B _H	si Hata ksenleri Сн
NN	$(A^{T}P)$	ί A)⁺ Matr Dzdeğerle λ _Y	^j çüncü A isinin ri λ _z	dım (A ^T PA Elipsoid A _H (cm)) ⁺ Matris di Yarı E (cm) B _H (cm)	si Hata ksenleri C _H (cm)	NN	$(A^{T}P)$	Dö A)⁺ Matr Özdeğerle λγ	rdüncü A isinin ri λ _z	dım (A ^T PA Elipsoid A _H (cm)) ⁺ Matris di Yarı E (cm) B _H (cm)	i Hata ksenleri С _н (ст)
NN N1	$(\mathbf{A}^{T}\mathbf{P}, \mathbf{C})$	i A) ⁺ Matr Dzdeğerle λ _Y 0.840	$\frac{\lambda_z}{\lambda_z}$	dım (A ^T PA Elipsoid A _H (cm) 0.92) ⁺ Matris di Yarı E (cm) B _H (cm) 0.92	si Hata ksenleri C _H (cm) 0.92	NN N1	$(\mathbf{A}^{\mathrm{T}}\mathbf{P}$ $\ddot{\mathbf{C}}$ $\lambda_{\mathbf{X}}$ 1.019	Dö A) ⁺ Matr Dzdeğerle λ _Y 1.019	rdüncü A isinin ri λ_z 1.019	dım (A ^T PA Elipsoid A _H (cm) 1.05) ⁺ Matris di Yarı E (cm) B _H (cm) 1.05	si Hata ksenleri C _н (cm) 1.05
NN N1 N2	$(A^{T}P_{C})$	(A) ⁺ Matr Dzdeğerle λ_Y 0.840 1.493	$\begin{array}{c} \mathbf{\hat{J}_{\boldsymbol{\zeta}}}\mathbf{\hat{u}}\mathbf{n}\mathbf{C}\mathbf{\hat{u}} \mathbf{A}\\ \mathbf{\hat{u}sinin}\\ \mathbf{ri}\\ \mathbf{\hat{\lambda}_{Z}}\\ 0.840\\ 1.493\\ 1.450\end{array}$	dım (A ^T PA Elipsoid A _H (cm) 0.92 1.22) ⁺ Matris di Yarı E (cm) B _H (cm) 0.92 1.22	si Hata ksenleri C _H (cm) 0.92 1.22	NN N1 N2	$(\mathbf{A}^{T}\mathbf{P})$	$\frac{\mathbf{D}\mathbf{\ddot{o}}}{\mathbf{A}}^{\dagger} \mathbf{M} \mathbf{a} \mathbf{t} \mathbf{r}$ $\mathbf{\ddot{o}} \mathbf{z} \mathbf{d} \mathbf{e} \mathbf{\ddot{g}} \mathbf{e} \mathbf{r} \mathbf{l} \mathbf{e}$ $\mathbf{\ddot{\lambda}}_{\mathbf{Y}}$ 1.019 1.655 1.650	rdüncü A isinin ri λ_z 1.019 1.655	dım (A ^T PA Elipsoid A _H (cm) 1.05 1.32	 A)⁺ Matris di Yarı E (cm) B_H (cm) 1.05 1.32 1.26 	i Hata ksenleri Сн (ст) 1.05 1.32
NN N1 N2 N3	$(A^{T}P)$ \ddot{C} λ_{X} 0.840 1.493 1.450 1.9(2)	(A) ⁺ Matr Dzdeğerle λ_Y 0.840 1.493 1.450	λ z 0.840 1.493 1.450 1.002	dım (A ^T PA Elipsoid A _H (cm) 0.92 1.22 1.22	.) ⁺ Matris di Yarı E (cm) B _H (cm) 0.92 1.22 1.22 1.41	ii Hata ksenleri C _H (cm) 0.92 1.22 1.22 1.41	NN N1 N2 N3	$(A^{T}P)$ (λ_{x}) 1.019 1.655 1.659 2.032	Dö A)⁺ Matr Dzdeğerle λ _Y 1.019 1.655 1.659	rdüncü A isinin ri λ_z 1.019 1.655 1.659 2.032	dım (A ^T PA Elipsoid A _H (cm) 1.05 1.32 1.36	A) ⁺ Matris di Yarı E (cm) B _H (cm) 1.05 1.32 1.36 1.45	i Hata ksenleri С _H (сm) 1.05 1.32 1.36
NN N1 N2 N3 N4	$(A^{T}P)$ C λ_{X} 0.840 1.493 1.450 1.960 1.960	$\dot{\mathbf{X}}^{+}$ Matr Dzdeğerle $\lambda_{\mathbf{Y}}$ 0.840 1.493 1.450 1.962 2.200	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \hline \\ \end{array} \\ \hline \\ \end{array} \\ \hline \\ \end{array} \\ \hline \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \hline \\ \\ \end{array} \\ \hline \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \hline \\ \\ \end{array} \\ \hline \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \hline \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \hline \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \hline \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $	dım (A ^T PA Elipsoid (cm) 0.92 1.22 1.22 1.41 1.56	.) ⁺ Matris di Yarı E (cm) B _H (cm) 0.92 1.22 1.22 1.41 1.56	ii Hata ksenleri C _H (cm) 0.92 1.22 1.22 1.22 1.41	NN N1 N2 N3 N4	$(A^{T}P) (C^{T}P) ($	Dö A) ⁺ Matr D zdeğerle λ_{Y} 1.019 1.655 1.659 2.033 2.417	rdüncü A isinin ri λ_z 1.019 1.655 1.659 2.033 2.417	dım (A ^T PA Elipsoid A _H (cm) 1.05 1.32 1.36 1.45	A) ⁺ Matris di Yarı E (cm) B _H (cm) 1.05 1.32 1.36 1.45	i Hata ksenleri C _H (cm) 1.05 1.32 1.36 1.45
NN N1 N2 N3 N4 N5	$(A^{T}P)$ C λ_{X} 0.840 1.493 1.450 1.962 2.390 1.590	$\tilde{\mathbf{A}}^{+}$ Matr Dzdeğerle $\lambda_{\mathbf{Y}}$ 0.840 1.493 1.450 1.962 2.390 1.500	$\begin{array}{c} \hat{J} \hat{c} \hat{u} n c \hat{u} \ A \\ \hat{i} \hat{s} \hat{n} \hat{n} \\ r \hat{i} \\ \hline \lambda_{Z} \\ 0.840 \\ 1.493 \\ 1.450 \\ 1.962 \\ 2.390 \\ 1.500 \end{array}$	dım (A ^T PA Elipsoid (cm) 0.92 1.22 1.22 1.41 1.56 1.26	.) ⁺ Matris di Yarı E (cm) 0.92 1.22 1.22 1.41 1.56 1.26	i Hata ksenleri C _H (cm) 0.92 1.22 1.22 1.41 1.56 1.26	NN N1 N2 N3 N4 N5	$(A^{T}P) = C^{T}C^{T}C^{T}C^{T}C^{T}C^{T}C^{T}C^{T}$	Dö A)⁺ Matr Dzdeğerle λ_{Y} 1.019 1.655 1.659 2.033 2.417 1.585	rdüncü A isinin ri λ_z 1.019 1.655 1.659 2.033 2.417 1.585	dım (A ^T PA Elipsoid A _H (cm) 1.05 1.32 1.36 1.45 1.57 1.26	A) ⁺ Matris di Yarı El (cm) 1.05 1.32 1.36 1.45 1.57 1.26	i Hata ksenleri C _H (cm) 1.05 1.32 1.36 1.45 1.57 1.26
NN N1 N2 N3 N4 N5 N6 N7	$(A^{T}P) C C C C C C C C C C C C C C C C C C C$	(A)⁺ Matr 2değerle λ _Y 0.840 1.493 1.450 1.962 2.390 1.590 1.708	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \\ \hline \end{array} \\ \\ \end{array} \\ \hline \end{array} \\ \\ \end{array} \\ \hline \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ $ \\ \hline \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\	dım (A ^T PA Elipsoid 0.92 1.22 1.22 1.41 1.56 1.26 1.31	.) ⁺ Matris di Yarı E (cm) 0.92 1.22 1.22 1.41 1.56 1.26 1.31	ii Hata ksenleri C _H (cm) 0.92 1.22 1.22 1.41 1.56 1.26 1.31	NN N1 N2 N3 N4 N5 N6 N7	$(A^{T}P) = C^{T}C^{T}C^{T}C^{T}C^{T}C^{T}C^{T}C^{T}$	Dö A)⁺ Matr Dzdeğerle λ _V 1.019 1.655 1.659 2.033 2.417 1.585 1.716	rdüncü A isinin ri λ_z 1.019 1.655 1.659 2.033 2.417 1.585 1.716	dım (A ^T PA Elipsoid A _H (cm) 1.05 1.32 1.36 1.45 1.57 1.26 1.32	A) ⁺ Matris di Yarı El (cm) 1.05 1.32 1.36 1.45 1.57 1.26 1.32	i Hata ksenleri C _H (cm) 1.05 1.32 1.36 1.45 1.57 1.26 1.32
NN N1 N2 N3 N4 N5 N6 N7 N8	$\begin{array}{c} (\mathbf{A^{T}P} \\ \ddot{\mathbf{C}} \\ \lambda_{\mathbf{X}} \\ 0.840 \\ 1.493 \\ 1.450 \\ 1.962 \\ 2.390 \\ 1.590 \\ 1.708 \\ 1.851 \end{array}$	ζ A) ⁺ Matr D zdeğerle λ_{Y} 0.840 1.493 1.450 1.962 2.390 1.590 1.708 1.851	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	dım (A ^T PA Elipsoid (cm) 0.92 1.22 1.22 1.22 1.41 1.56 1.26 1.31 1.36	.) ⁺ Matris di Yarı E (cm) 0.92 1.22 1.22 1.41 1.56 1.26 1.31 1.36	i Hata ksenleri C _H (cm) 0.92 1.22 1.22 1.41 1.56 1.26 1.31 1.36	NN N1 N2 N3 N4 N5 N6 N7 N8	$(A^{T}P)$ (λ_{X}) 1.019 1.655 1.659 2.033 2.417 1.585 1.716 1.875	$\begin{array}{c} \textbf{D\"\ddot{o}}\\ \textbf{A})^+ \ \textbf{Matr}\\ \textbf{Z} \textbf{d} \textbf{e} \textbf{g} \textbf{e} \textbf{r} \textbf{l} \textbf{e}\\ \hline \boldsymbol{\lambda}_{\boldsymbol{Y}}\\ 1.019\\ 1.655\\ 1.659\\ 2.033\\ 2.417\\ 1.585\\ 1.716\\ 1.875\\ \end{array}$	rdüncü A isinin ri λ_z 1.019 1.655 1.659 2.033 2.417 1.585 1.716 1.875	dım (A ^T PA Elipsoid A _H (cm) 1.05 1.32 1.36 1.45 1.57 1.26 1.32 1.38	A) ⁺ Matris di Yarı El (cm) 1.05 1.32 1.36 1.45 1.57 1.26 1.32 1.38	i Hata ksenleri C _H (cm) 1.05 1.32 1.36 1.45 1.57 1.26 1.32 1.38
NN N1 N2 N3 N4 N5 N6 N7 N8 N9	$\begin{array}{c} (A^{T}P,\\ \ddot{C}\\ \lambda_{X}\\ 0.840\\ 1.493\\ 1.450\\ 1.962\\ 2.390\\ 1.590\\ 1.708\\ 1.851\\ 0.851 \end{array}$	$\begin{array}{c} \textbf{()}\\ \textbf{()}^{+} \textbf{Matr}\\ \textbf{)zdeğerle}\\ \hline \textbf{()}\\ $	$\begin{array}{c} \hline \textbf{jcüncü A} \\ \hline \textbf{isinin} \\ \textbf{ri} \\ \hline \lambda_{\textbf{Z}} \\ \hline 0.840 \\ 1.493 \\ 1.450 \\ 1.962 \\ 2.390 \\ 1.590 \\ 1.590 \\ 1.708 \\ 1.851 \\ 0.851 \\ \end{array}$	dım (A ^T PA Elipsoid A _H (cm) 0.92 1.22 1.22 1.22 1.41 1.56 1.26 1.31 1.36 0.92	.) ⁺ Matris di Yarı E (cm) 0.92 1.22 1.22 1.22 1.41 1.56 1.26 1.31 1.36 0.92	i Hata ksenleri C _H (cm) 0.92 1.22 1.22 1.41 1.56 1.26 1.31 1.36 0.92	NN N1 N2 N3 N4 N5 N6 N7 N8 N9	$(A^{T}P)$	$\begin{array}{c} \textbf{D\"\ddot{o}}\\ \textbf{A})^+ \ \textbf{Matr}\\ \textbf{Z} \textbf{d} \textbf{e} \textbf{g} \textbf{e} \textbf{r} \textbf{l} \textbf{e}\\ \hline \boldsymbol{\lambda}_{\mathbf{Y}}\\ 1.019\\ 1.655\\ 1.659\\ 2.033\\ 2.417\\ 1.585\\ 1.716\\ 1.875\\ 0.909\\ \end{array}$	$\begin{array}{c} \textbf{rdüncü A} \\ \textbf{isinin} \\ \textbf{ri} \\ \hline \lambda_{Z} \\ 1.019 \\ 1.655 \\ 1.659 \\ 2.033 \\ 2.417 \\ 1.585 \\ 1.716 \\ 1.875 \\ 0.909 \end{array}$	dım (A ^T PA Elipsoid A _H (cm) 1.05 1.32 1.36 1.45 1.57 1.26 1.32 1.38 0.97	A) ⁺ Matris di Yarı El (cm) 1.05 1.32 1.36 1.45 1.57 1.26 1.32 1.38 0.97	i Hata ksenleri C _H (cm) 1.05 1.32 1.36 1.45 1.57 1.26 1.32 1.38 0.97
NN N1 N2 N3 N4 N5 N6 N7 N8 N9 N1	$\begin{array}{c} (\mathbf{A}^{T}\mathbf{P},\\ \mathbf{\ddot{C}}\\ \lambda_{\mathbf{X}}\\ 0.840\\ 1.493\\ 1.450\\ 1.962\\ 2.390\\ 1.590\\ 1.708\\ 1.851\\ 0.851\\ 1.528\\ \end{array}$	$\begin{array}{c} \textbf{()}\\ \textbf{()}^{+} \textbf{Matr}\\ \textbf{()}\\ ()$	$\begin{array}{c} \hline \textbf{j} \textbf{ç} \textbf{ünc u} \textbf{A} \\ \textbf{isinin} \\ \textbf{ri} \\ \hline \boldsymbol{\lambda}_{\textbf{Z}} \\ 0.840 \\ 1.493 \\ 1.450 \\ 1.962 \\ 2.390 \\ 1.590 \\ 1.590 \\ 1.708 \\ 1.851 \\ 0.851 \\ 1.528 \end{array}$	dum (A ^T PA Elipsoid A _H (cm) 0.92 1.22 1.22 1.22 1.41 1.56 1.26 1.31 1.36 0.92 1.25) ⁺ Matris di Yarı E (cm) 0.92 1.22 1.22 1.41 1.56 1.26 1.31 1.36 0.92 1.25	si Hata ksenleri C _H (cm) 0.92 1.22 1.22 1.41 1.56 1.26 1.31 1.36 0.92 1.25	NN N1 N2 N3 N4 N5 N6 N7 N8 N9	$(A^{T}P)$ $(\lambda_{X}$ 1.019 1.655 1.659 2.033 2.417 1.585 1.716 1.875 0.909 1.527	$\begin{array}{c} \textbf{D\"\ddot{o}}\\ \textbf{A})^+ \ \textbf{Matr}\\ \textbf{Zde\check{g}erle}\\ \hline \textbf{\lambda}_{Y}\\ 1.019\\ 1.655\\ 1.659\\ 2.033\\ 2.417\\ 1.585\\ 1.716\\ 1.875\\ 0.909\\ 1.527\\ \end{array}$	$\begin{array}{c} \textbf{rdüncü A} \\ \textbf{isinin} \\ \textbf{ri} \\ \hline \lambda_{Z} \\ 1.019 \\ 1.655 \\ 1.659 \\ 2.033 \\ 2.417 \\ 1.585 \\ 1.716 \\ 1.875 \\ 0.909 \\ 1.527 \end{array}$	dım (A ^T PA Elipsoid A _H (cm) 1.05 1.32 1.36 1.45 1.57 1.26 1.32 1.38 0.97 1.25	A) ⁺ Matris di Yarı El (cm) B _H (cm) 1.05 1.32 1.36 1.45 1.57 1.26 1.32 1.38 0.97 1.25	i Hata ksenleri C _H (cm) 1.05 1.32 1.36 1.45 1.57 1.26 1.32 1.38 0.97 1.25
NN N1 N2 N3 N4 N5 N6 N7 N8 N9 N1 0	$\begin{array}{c} (\mathbf{A^{T}P},\\ \mathbf{\ddot{C}}\\ \lambda_{\mathbf{X}}\\ 0.840\\ 1.493\\ 1.450\\ 1.962\\ 2.390\\ 1.590\\ 1.708\\ 1.851\\ 0.851\\ 1.528\\ \end{array}$	(A)⁺ Matr 2değerle λ _Y 0.840 1.493 1.450 1.962 2.390 1.590 1.708 1.851 0.851 1.528	$\begin{array}{c} \hline \textbf{jcüncü A} \\ \hline \textbf{isinin} \\ \textbf{ri} \\ \hline \lambda_{\textbf{Z}} \\ \hline 0.840 \\ \hline 1.493 \\ \hline 1.450 \\ \hline 1.962 \\ \hline 2.390 \\ \hline 1.590 \\ \hline 1.590 \\ \hline 1.708 \\ \hline 1.851 \\ \hline 0.851 \\ \hline 1.528 \\ \end{array}$	dım (A ^T PA Elipsoid A _H (cm) 0.92 1.22 1.22 1.22 1.41 1.56 1.26 1.31 1.36 0.92 1.25	b ⁺ Matris (cm) B _H (cm) 0.92 1.22 1.22 1.22 1.41 1.56 1.26 1.31 1.36 0.92 1.25	si Hata ksenleri C _H (сm) 0.92 1.22 1.22 1.22 1.41 1.56 1.26 1.31 1.36 0.92 1.25	NN N1 N2 N3 N4 N5 N6 N7 N8 N9 N10	$(A^{T}P)$ (λ_{X}) 1.019 1.655 1.659 2.033 2.417 1.585 1.716 1.875 0.909 1.527	$\begin{array}{c} \textbf{D\"\ddot{o}}\\ \textbf{A})^+ \ \textbf{Matr}\\ \textbf{Z} \textbf{de} \ \textbf{g} \textbf{e} \textbf{r} \textbf{le}\\ \hline \textbf{\lambda}_{\textbf{Y}}\\ 1.019\\ 1.655\\ 1.659\\ 2.033\\ 2.417\\ 1.585\\ 1.716\\ 1.875\\ 0.909\\ 1.527\\ \end{array}$	$\begin{array}{c} \textbf{rdüncü A} \\ \textbf{isinin} \\ \textbf{ri} \\ \hline \lambda_{Z} \\ 1.019 \\ 1.655 \\ 1.659 \\ 2.033 \\ 2.417 \\ 1.585 \\ 1.716 \\ 1.875 \\ 0.909 \\ 1.527 \end{array}$	dım (A ^т РА Elipsoid A _н (сm) 1.05 1.32 1.36 1.45 1.57 1.26 1.32 1.38 0.97 1.25	A) ⁺ Matris di Yarı E (cm) B _H (cm) 1.05 1.32 1.36 1.45 1.57 1.26 1.32 1.38 0.97 1.25	i Hata ksenleri C _H (сm) 1.05 1.32 1.36 1.45 1.57 1.26 1.32 1.38 0.97 1.25

Tablo 4: Ölçü planlarından hesaplanan özdeğerler ve hata elipsoidleri yarı eksen büyüklükleri

Tablo 4'de görüldüğü gibi ters ağırlık matrislerinden hesaplanan özdeğerler ve hata elipsoidi elemanları büyüklüklerindeki değişimler dördüncü adıma kadar çok küçük olmuştur. Diğer bir ifadeyle, çıkarılan ağırlığı negatif ve sıfıra çok yakın olan bazların amaç fonksiyonuna anlamlı bir katkı sağlamadığı gibi nokta konum hatalarında da anlamlı bir değişime neden olmadıkları belirlenmiştir. Buna karşın sadece bir bazın çıkarıldığı dördüncü adımda hesaplanan nokta konum hatalarında büyüme olduğu görülmüştür.

Optimizasyon işleminin tüm adımlarında oluşan ağlar toplu olarak Şekil 3'de verilmiştir.

Şekil 3: Optimizasyon adımlarında oluşan tasarı ağlar

Şekil 3'de görülen üçüncü ölçü planı ile ulaşılan optimal ağ geometrisini oluşturan bazların ağırlıkları, (18) eşitliğinden bulunan λ çarpanı ile (19) eşitliğinde verilen doğrusal dönüşüm yapılarak hesaplanmıştır (Tablo 5).

Bazlar	$\Delta \mathbf{X}$ (m)	$\Delta \mathbf{Y}(\mathbf{m})$	$\Delta \mathbf{Z}(\mathbf{m})$	Optimal Ağırlıklar	Bazlar	$\Delta \mathbf{X}$ (m)	$\Delta \mathbf{Y}$ (m)	$\Delta \mathbf{Z}(\mathbf{m})$	Optimal Ağırlıklar
N1-N2	164.40	225.27	270.73	0.4403	N5-N6	466.13	352.64	608.43	0.2547
N1-N3	308.11	377.36	32.18	0.3322	N5-N8	224.59	299.62	21.28	0.7603
N1-N6	453.01	395.32	9.14	0.1217	N6-N9	200.19	590.98	284.26	0.1667
N1-N9	252.81	195.66	275.13	0.6208	N6-N10	345.58	23.81	230.79	0.6462
N1-N10	107.43	371.51	239.93	0.2146	N7-N8	277.53	277.33	46.69	0.6739
N2-N4	329.69	386.95	4.43	0.4752	N7-N9	164.20	338.60	298.76	0.2871
N2-N10	271.84	146.23	30.81	0.8597	N7-N11	468.61	67.91	291.97	0.4237
N3-N4	185.98	215.69	234.13	0.7299	N8-N9	441.73	61.27	345.45	0.2170
N3-N11	256.52	221.84	314.10	0.5671	N9-N11	304.41	406.51	6.79	0.2693

Tablo 5: Optimum ağa ilişkin ağırlıklar

4. SONUÇLAR VE ÖNERİLER

Jeodezik ağların optimizasyonunda amaç fonksiyonu olarak, ağdan beklenen tüm duyarlık isteklerini yansıtılabilen ölçüt matrisleri seçilmelidir. Çalışmada, ağdan beklenen duyarlık isteklerinin ölçüt matrisine yaklaşıldığı ölçüde sağlanılabileceği görülmüştür. Genelde ağların homojen ve izotrop yapıda olması istenildiğinden; amaç fonksiyonu olarak, duyarlık yönünden homojen ve izotrop bir ağ beklentisini karşılayan tam izotrop yapıdaki Taylor-Karman ölçüt matrisi seçilmelidir.

İkinci derece optimizasyonunun yapıldığı ölçüt matrisinin inversine direkt yaklaşım (U,m) çözüm algoritmasında, ağırlıkları negatif ve sıfıra yakın değer alan bazlar çıkarılarak oluşturulan ölçü planlarından hesaplanan global ölçüt değerlerindeki büyümenin çok az olduğu saptanmıştır. Buna karşın, optimal ölçü planını oluşturan bazlardan ağırlığı en küçük olanı çıkarılarak oluşturulan yeni ölçü planından hesaplanan global ölçüt değerinin büyüdüğü görülmüştür. Diğer bir deyişle ölçü planından çıkarılan bazların ölçüt matrisinden uzaklaşılmasına ve nokta konum hatalarında da anlamlı bir artışa neden olduğu belirlenmiştir. Bu durum, optimum ağın ancak ağırlıkları negatif ve sıfıra çok yakın değer alan bazlar çıkarılarak oluşturulabileceğini göstermiştir. Uygulama sonucunda, ölçüt matrisinin inversine direkt yaklaşım (U,m) çözümü ile gerçekleştirilen ölçü planı optimizasyonunun GPS ağlarına uygulanabilir olduğu saptanmıştır.

TEŞEKKÜR

Mali desteklerinden dolayı Karadeniz Teknik Üniversitesi araştırma fonuna ve eserlerinden yararlandığımız adı geçen yazarlara teşekkür ederiz.

KAYNAKLAR

Ayan T., 1981. Jeodezik Ağların Optimizasyonu, Doçentlik Tezi, İ.T.Ü. İnşaat Fakültesi, İstanbul.

Dare P., 1995. Optimal Design of GPS Networks: Operational Procedures, Phd. Thesis, University of East London, School of Surveying, London.

Even-Tzur G. and Papo H., 1996. *Optimisation of GPS Networks by lineer programming*, Survey Review, 33, 537–545.

Even-Tzur G., 2001. *GPS vector configuration design for monitoring deformation network in the north of Israel*, The 10th FIG International Symposium on Deformation Measurements, Orange, California, USA, pp. 154-163.

Gerasimaenko M. D., 1997. First order design of the deformation networks with the minimal number of geodetic points and their optimal allocation, Far Eastern Mathematical Reports, 4, pp. 86-94.

Grafarend E. W., 1975. Second Order Design of Geodetic Nets, ZFV, 100, 150-168.

Grafarend E. W. and Sanso F., 1985. Optimization and design of geodetic networks, Springer – Verlag, Berlin, Heidelberg, Newyork, Tokyo, pp. 585-588.

Illner M., 1986. Anlage und Optimierung von Verdichtungs-netzen, DGK Reihe C, 317, München.

Kınık I., 1987. Jeodezik Ağların Ölçüt Matrisleriyle İkinci Dereceden Optimizasyonu, Harita Dergisi, 99, 30-49.

Konak H., 1994. Yüzey ağlarının optimizasyonu, Doktora Tezi, K.T.Ü., Fen Bilimleri Enstitüsü, Trabzon.

Kuang S., 1996. Geodetic network analysis and optimal design, Ann Arbor Press, Inc., ISBN 1-57504-044-1.

Özşamlı C., 1994. Kontrol Ağlarının Ölçüt Matrisleri İle Ağırlık ve Ölçü Planı Optimizasyonu, Doktora Tezi, İ.T.Ü. Fen Bilimleri Enstitüsü, İstanbul.

Öztürk E. ve Şerbetçi M., 1992. Dengeleme Hesabı, Cilt III, K.T.Ü. Basımevi, Trabzon, 504-523..

Schaffrin B., 1985. Aspects of network design, optimization and design of geodetic networks, Grafarend and Sanso, eds. Springer – Verlag, Berlin, pp. 548-597.

Wolf P. R. and Ghilani C. D., 1997. *Adjustment computation: statistics and least squares in surveying and GIS*, John Wiley and Sons, Inc., Newyork, Chichester, Brisbane, Toronto, Singapore, Weinheim, pp. 235-250.

JEODEZİK GPS AĞLARININ ÖLÇÜT MATRİSLERİ İLE ÖLÇÜ PLANI OPTİMİZASYONU

Sunumu Yapacak Yazar: Kamil TEKE

ÖZGEÇMİŞ

1979 yılında Ankara'da doğdu. İlk öğrenimini Çankırı Merkez İlköğretim okulunda, orta öğrenimini Çankırı Anadolu Lisesinde ve Lise öğrenimini Ankara Anadolu Tapu ve Kadastro Meslek Lisesinde tamamladı. Tapu ve Kadastro Genel müdürlüğüne bağlı Trabzon ili, Arsin İçesi, Kadastro Müdürlüğünde, kadastro teknisyeni olarak bir yıl görev yaptı.

Lisans öğrenimine, 01/09/1997 tarihinde, K.T.Ü. Mühendislik Mimarlık Fakültesi Jeodezi ve Fotogrametri Mühendisliği Bölümü'nde başladı. 22/06/2001 tarihinde bu bölümden harita mühendisi ünvanı ile mezun oldu. 24/09/2001 tarihinde K.T.Ü. Fen Bilimleri Enstitüsü jeodezi bilim dalında yüksek lisans öğrenimi'ne ve Ekim 2001'de K.T.Ü. Jeodezi ve Fotogrametri Mühendisliği Bölümü'nde araştırma görevlisi olarak göreve başladı. 09/09/2004 tarihinde Yüksek Lisans öğrenimini tamamladı. Aynı yıl K.T.Ü. Fen Bilimleri Enstitüsü jeodezi bilim dalında oktora programına başladı. Halen Doç. Dr. Mualla Yalçınkaya'nın danışmanlığında araştırma görevlisi olarak doktora öğrenimini sürdürmektedir.

ILETIŞİM BILGILERİ

Adı - Soyadı: Mualla YALÇINKAYA

Yazışma Adresi: Karadeniz Teknik Üniveristesi, Jeodezi ve Fotogrametri Mühendisliği Bölümü, 61080, TRABZON.

Telefon: + 90-462-3772760

Faks: +90-462-3280918

e-posta: mualla@ktu.edu.tr

Adı - Soyadı: Kamil TEKE

Yazışma Adresi: Karadeniz Teknik Üniveristesi, Jeodezi ve Fotogrametri Mühendisliği Bölümü, 61080, TRABZON.
Telefon: + 90-462-3772797
Faks: +90-462-3280918
e-posta: k_teke@ktu.edu.tr